// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This is the main header file a user should include. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_H_ // This file implements the following syntax: // // ON_CALL(mock_object.Method(...)) // .With(...) ? // .WillByDefault(...); // // where With() is optional and WillByDefault() must appear exactly // once. // // EXPECT_CALL(mock_object.Method(...)) // .With(...) ? // .Times(...) ? // .InSequence(...) * // .WillOnce(...) * // .WillRepeatedly(...) ? // .RetiresOnSaturation() ? ; // // where all clauses are optional and WillOnce() can be repeated. // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used actions. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #ifndef _WIN32_WCE # include #endif #include #include // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file defines some utilities useful for implementing Google // Mock. They are subject to change without notice, so please DO NOT // USE THEM IN USER CODE. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #include #include // NOLINT #include // This file was GENERATED by command: // pump.py gmock-generated-internal-utils.h.pump // DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file contains template meta-programming utility classes needed // for implementing Google Mock. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: vadimb@google.com (Vadim Berman) // // Low-level types and utilities for porting Google Mock to various // platforms. They are subject to change without notice. DO NOT USE // THEM IN USER CODE. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #include #include #include // Most of the types needed for porting Google Mock are also required // for Google Test and are defined in gtest-port.h. #include "gtest/gtest.h" // To avoid conditional compilation everywhere, we make it // gmock-port.h's responsibility to #include the header implementing // tr1/tuple. gmock-port.h does this via gtest-port.h, which is // guaranteed to pull in the tuple header. // For MS Visual C++, check the compiler version. At least VS 2003 is // required to compile Google Mock. #if defined(_MSC_VER) && _MSC_VER < 1310 # error "At least Visual C++ 2003 (7.1) is required to compile Google Mock." #endif // Macro for referencing flags. This is public as we want the user to // use this syntax to reference Google Mock flags. #define GMOCK_FLAG(name) FLAGS_gmock_##name // Macros for declaring flags. #define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) #define GMOCK_DECLARE_int32_(name) \ extern GTEST_API_ ::testing::internal::Int32 GMOCK_FLAG(name) #define GMOCK_DECLARE_string_(name) \ extern GTEST_API_ ::std::string GMOCK_FLAG(name) // Macros for defining flags. #define GMOCK_DEFINE_bool_(name, default_val, doc) \ GTEST_API_ bool GMOCK_FLAG(name) = (default_val) #define GMOCK_DEFINE_int32_(name, default_val, doc) \ GTEST_API_ ::testing::internal::Int32 GMOCK_FLAG(name) = (default_val) #define GMOCK_DEFINE_string_(name, default_val, doc) \ GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ namespace testing { template class Matcher; namespace internal { // An IgnoredValue object can be implicitly constructed from ANY value. // This is used in implementing the IgnoreResult(a) action. class IgnoredValue { public: // This constructor template allows any value to be implicitly // converted to IgnoredValue. The object has no data member and // doesn't try to remember anything about the argument. We // deliberately omit the 'explicit' keyword in order to allow the // conversion to be implicit. template IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) }; // MatcherTuple::type is a tuple type where each field is a Matcher // for the corresponding field in tuple type T. template struct MatcherTuple; template <> struct MatcherTuple< ::std::tr1::tuple<> > { typedef ::std::tr1::tuple< > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; // Template struct Function, where F must be a function type, contains // the following typedefs: // // Result: the function's return type. // ArgumentN: the type of the N-th argument, where N starts with 1. // ArgumentTuple: the tuple type consisting of all parameters of F. // ArgumentMatcherTuple: the tuple type consisting of Matchers for all // parameters of F. // MakeResultVoid: the function type obtained by substituting void // for the return type of F. // MakeResultIgnoredValue: // the function type obtained by substituting Something // for the return type of F. template struct Function; template struct Function { typedef R Result; typedef ::std::tr1::tuple<> ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(); typedef IgnoredValue MakeResultIgnoredValue(); }; template struct Function : Function { typedef A1 Argument1; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1); typedef IgnoredValue MakeResultIgnoredValue(A1); }; template struct Function : Function { typedef A2 Argument2; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2); typedef IgnoredValue MakeResultIgnoredValue(A1, A2); }; template struct Function : Function { typedef A3 Argument3; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3); }; template struct Function : Function { typedef A4 Argument4; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4); }; template struct Function : Function { typedef A5 Argument5; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5); }; template struct Function : Function { typedef A6 Argument6; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6); }; template struct Function : Function { typedef A7 Argument7; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7); }; template struct Function : Function { typedef A8 Argument8; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8); }; template struct Function : Function { typedef A9 Argument9; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8, A9); }; template struct Function : Function { typedef A10 Argument10; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); }; } // namespace internal } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ namespace testing { namespace internal { // Converts an identifier name to a space-separated list of lower-case // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is // treated as one word. For example, both "FooBar123" and // "foo_bar_123" are converted to "foo bar 123". GTEST_API_ string ConvertIdentifierNameToWords(const char* id_name); // PointeeOf::type is the type of a value pointed to by a // Pointer, which can be either a smart pointer or a raw pointer. The // following default implementation is for the case where Pointer is a // smart pointer. template struct PointeeOf { // Smart pointer classes define type element_type as the type of // their pointees. typedef typename Pointer::element_type type; }; // This specialization is for the raw pointer case. template struct PointeeOf { typedef T type; }; // NOLINT // GetRawPointer(p) returns the raw pointer underlying p when p is a // smart pointer, or returns p itself when p is already a raw pointer. // The following default implementation is for the smart pointer case. template inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { return p.get(); } // This overloaded version is for the raw pointer case. template inline Element* GetRawPointer(Element* p) { return p; } // This comparator allows linked_ptr to be stored in sets. template struct LinkedPtrLessThan { bool operator()(const ::testing::internal::linked_ptr& lhs, const ::testing::internal::linked_ptr& rhs) const { return lhs.get() < rhs.get(); } }; // Symbian compilation can be done with wchar_t being either a native // type or a typedef. Using Google Mock with OpenC without wchar_t // should require the definition of _STLP_NO_WCHAR_T. // // MSVC treats wchar_t as a native type usually, but treats it as the // same as unsigned short when the compiler option /Zc:wchar_t- is // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t // is a native type. #if (GTEST_OS_SYMBIAN && defined(_STLP_NO_WCHAR_T)) || \ (defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)) // wchar_t is a typedef. #else # define GMOCK_WCHAR_T_IS_NATIVE_ 1 #endif // signed wchar_t and unsigned wchar_t are NOT in the C++ standard. // Using them is a bad practice and not portable. So DON'T use them. // // Still, Google Mock is designed to work even if the user uses signed // wchar_t or unsigned wchar_t (obviously, assuming the compiler // supports them). // // To gcc, // wchar_t == signed wchar_t != unsigned wchar_t == unsigned int #ifdef __GNUC__ // signed/unsigned wchar_t are valid types. # define GMOCK_HAS_SIGNED_WCHAR_T_ 1 #endif // In what follows, we use the term "kind" to indicate whether a type // is bool, an integer type (excluding bool), a floating-point type, // or none of them. This categorization is useful for determining // when a matcher argument type can be safely converted to another // type in the implementation of SafeMatcherCast. enum TypeKind { kBool, kInteger, kFloatingPoint, kOther }; // KindOf::value is the kind of type T. template struct KindOf { enum { value = kOther }; // The default kind. }; // This macro declares that the kind of 'type' is 'kind'. #define GMOCK_DECLARE_KIND_(type, kind) \ template <> struct KindOf { enum { value = kind }; } GMOCK_DECLARE_KIND_(bool, kBool); // All standard integer types. GMOCK_DECLARE_KIND_(char, kInteger); GMOCK_DECLARE_KIND_(signed char, kInteger); GMOCK_DECLARE_KIND_(unsigned char, kInteger); GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(int, kInteger); GMOCK_DECLARE_KIND_(unsigned int, kInteger); GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DECLARE_KIND_(wchar_t, kInteger); #endif // Non-standard integer types. GMOCK_DECLARE_KIND_(Int64, kInteger); GMOCK_DECLARE_KIND_(UInt64, kInteger); // All standard floating-point types. GMOCK_DECLARE_KIND_(float, kFloatingPoint); GMOCK_DECLARE_KIND_(double, kFloatingPoint); GMOCK_DECLARE_KIND_(long double, kFloatingPoint); #undef GMOCK_DECLARE_KIND_ // Evaluates to the kind of 'type'. #define GMOCK_KIND_OF_(type) \ static_cast< ::testing::internal::TypeKind>( \ ::testing::internal::KindOf::value) // Evaluates to true iff integer type T is signed. #define GMOCK_IS_SIGNED_(T) (static_cast(-1) < 0) // LosslessArithmeticConvertibleImpl::value // is true iff arithmetic type From can be losslessly converted to // arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types, kFromKind is the kind of // From, and kToKind is the kind of To; the value is // implementation-defined when the above pre-condition is violated. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // Converting bool to bool is lossless. template <> struct LosslessArithmeticConvertibleImpl : public true_type {}; // NOLINT // Converting bool to any integer type is lossless. template struct LosslessArithmeticConvertibleImpl : public true_type {}; // NOLINT // Converting bool to any floating-point type is lossless. template struct LosslessArithmeticConvertibleImpl : public true_type {}; // NOLINT // Converting an integer to bool is lossy. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // NOLINT // Converting an integer to another non-bool integer is lossless iff // the target type's range encloses the source type's range. template struct LosslessArithmeticConvertibleImpl : public bool_constant< // When converting from a smaller size to a larger size, we are // fine as long as we are not converting from signed to unsigned. ((sizeof(From) < sizeof(To)) && (!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) || // When converting between the same size, the signedness must match. ((sizeof(From) == sizeof(To)) && (GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT #undef GMOCK_IS_SIGNED_ // Converting an integer to a floating-point type may be lossy, since // the format of a floating-point number is implementation-defined. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // NOLINT // Converting a floating-point to bool is lossy. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // NOLINT // Converting a floating-point to an integer is lossy. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // NOLINT // Converting a floating-point to another floating-point is lossless // iff the target type is at least as big as the source type. template struct LosslessArithmeticConvertibleImpl< kFloatingPoint, From, kFloatingPoint, To> : public bool_constant {}; // NOLINT // LosslessArithmeticConvertible::value is true iff arithmetic // type From can be losslessly converted to arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types; the value is // implementation-defined when the above pre-condition is violated. template struct LosslessArithmeticConvertible : public LosslessArithmeticConvertibleImpl< GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT // This interface knows how to report a Google Mock failure (either // non-fatal or fatal). class FailureReporterInterface { public: // The type of a failure (either non-fatal or fatal). enum FailureType { kNonfatal, kFatal }; virtual ~FailureReporterInterface() {} // Reports a failure that occurred at the given source file location. virtual void ReportFailure(FailureType type, const char* file, int line, const string& message) = 0; }; // Returns the failure reporter used by Google Mock. GTEST_API_ FailureReporterInterface* GetFailureReporter(); // Asserts that condition is true; aborts the process with the given // message if condition is false. We cannot use LOG(FATAL) or CHECK() // as Google Mock might be used to mock the log sink itself. We // inline this function to prevent it from showing up in the stack // trace. inline void Assert(bool condition, const char* file, int line, const string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, file, line, msg); } } inline void Assert(bool condition, const char* file, int line) { Assert(condition, file, line, "Assertion failed."); } // Verifies that condition is true; generates a non-fatal failure if // condition is false. inline void Expect(bool condition, const char* file, int line, const string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, file, line, msg); } } inline void Expect(bool condition, const char* file, int line) { Expect(condition, file, line, "Expectation failed."); } // Severity level of a log. enum LogSeverity { kInfo = 0, kWarning = 1 }; // Valid values for the --gmock_verbose flag. // All logs (informational and warnings) are printed. const char kInfoVerbosity[] = "info"; // Only warnings are printed. const char kWarningVerbosity[] = "warning"; // No logs are printed. const char kErrorVerbosity[] = "error"; // Returns true iff a log with the given severity is visible according // to the --gmock_verbose flag. GTEST_API_ bool LogIsVisible(LogSeverity severity); // Prints the given message to stdout iff 'severity' >= the level // specified by the --gmock_verbose flag. If stack_frames_to_skip >= // 0, also prints the stack trace excluding the top // stack_frames_to_skip frames. In opt mode, any positive // stack_frames_to_skip is treated as 0, since we don't know which // function calls will be inlined by the compiler and need to be // conservative. GTEST_API_ void Log(LogSeverity severity, const string& message, int stack_frames_to_skip); // TODO(wan@google.com): group all type utilities together. // Type traits. // is_reference::value is non-zero iff T is a reference type. template struct is_reference : public false_type {}; template struct is_reference : public true_type {}; // type_equals::value is non-zero iff T1 and T2 are the same type. template struct type_equals : public false_type {}; template struct type_equals : public true_type {}; // remove_reference::type removes the reference from type T, if any. template struct remove_reference { typedef T type; }; // NOLINT template struct remove_reference { typedef T type; }; // NOLINT // DecayArray::type turns an array type U[N] to const U* and preserves // other types. Useful for saving a copy of a function argument. template struct DecayArray { typedef T type; }; // NOLINT template struct DecayArray { typedef const T* type; }; // Sometimes people use arrays whose size is not available at the use site // (e.g. extern const char kNamePrefix[]). This specialization covers that // case. template struct DecayArray { typedef const T* type; }; // Invalid() returns an invalid value of type T. This is useful // when a value of type T is needed for compilation, but the statement // will not really be executed (or we don't care if the statement // crashes). template inline T Invalid() { return const_cast::type&>( *static_cast::type*>(NULL)); } template <> inline void Invalid() {} // Given a raw type (i.e. having no top-level reference or const // modifier) RawContainer that's either an STL-style container or a // native array, class StlContainerView has the // following members: // // - type is a type that provides an STL-style container view to // (i.e. implements the STL container concept for) RawContainer; // - const_reference is a type that provides a reference to a const // RawContainer; // - ConstReference(raw_container) returns a const reference to an STL-style // container view to raw_container, which is a RawContainer. // - Copy(raw_container) returns an STL-style container view of a // copy of raw_container, which is a RawContainer. // // This generic version is used when RawContainer itself is already an // STL-style container. template class StlContainerView { public: typedef RawContainer type; typedef const type& const_reference; static const_reference ConstReference(const RawContainer& container) { // Ensures that RawContainer is not a const type. testing::StaticAssertTypeEq(); return container; } static type Copy(const RawContainer& container) { return container; } }; // This specialization is used when RawContainer is a native array type. template class StlContainerView { public: typedef GTEST_REMOVE_CONST_(Element) RawElement; typedef internal::NativeArray type; // NativeArray can represent a native array either by value or by // reference (selected by a constructor argument), so 'const type' // can be used to reference a const native array. We cannot // 'typedef const type& const_reference' here, as that would mean // ConstReference() has to return a reference to a local variable. typedef const type const_reference; static const_reference ConstReference(const Element (&array)[N]) { // Ensures that Element is not a const type. testing::StaticAssertTypeEq(); #if GTEST_OS_SYMBIAN // The Nokia Symbian compiler confuses itself in template instantiation // for this call without the cast to Element*: // function call '[testing::internal::NativeArray].NativeArray( // {lval} const char *[4], long, testing::internal::RelationToSource)' // does not match // 'testing::internal::NativeArray::NativeArray( // char *const *, unsigned int, testing::internal::RelationToSource)' // (instantiating: 'testing::internal::ContainsMatcherImpl // ::Matches(const char * (&)[4]) const') // (instantiating: 'testing::internal::StlContainerView:: // ConstReference(const char * (&)[4])') // (and though the N parameter type is mismatched in the above explicit // conversion of it doesn't help - only the conversion of the array). return type(const_cast(&array[0]), N, kReference); #else return type(array, N, kReference); #endif // GTEST_OS_SYMBIAN } static type Copy(const Element (&array)[N]) { #if GTEST_OS_SYMBIAN return type(const_cast(&array[0]), N, kCopy); #else return type(array, N, kCopy); #endif // GTEST_OS_SYMBIAN } }; // This specialization is used when RawContainer is a native array // represented as a (pointer, size) tuple. template class StlContainerView< ::std::tr1::tuple > { public: typedef GTEST_REMOVE_CONST_( typename internal::PointeeOf::type) RawElement; typedef internal::NativeArray type; typedef const type const_reference; static const_reference ConstReference( const ::std::tr1::tuple& array) { using ::std::tr1::get; return type(get<0>(array), get<1>(array), kReference); } static type Copy(const ::std::tr1::tuple& array) { using ::std::tr1::get; return type(get<0>(array), get<1>(array), kCopy); } }; // The following specialization prevents the user from instantiating // StlContainer with a reference type. template class StlContainerView; // A type transform to remove constness from the first part of a pair. // Pairs like that are used as the value_type of associative containers, // and this transform produces a similar but assignable pair. template struct RemoveConstFromKey { typedef T type; }; // Partially specialized to remove constness from std::pair. template struct RemoveConstFromKey > { typedef std::pair type; }; // Mapping from booleans to types. Similar to boost::bool_ and // std::integral_constant. template struct BooleanConstant {}; } // namespace internal } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ namespace testing { // To implement an action Foo, define: // 1. a class FooAction that implements the ActionInterface interface, and // 2. a factory function that creates an Action object from a // const FooAction*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Action objects can now be copied like plain values. namespace internal { template class ActionAdaptor; // BuiltInDefaultValue::Get() returns the "built-in" default // value for type T, which is NULL when T is a pointer type, 0 when T // is a numeric type, false when T is bool, or "" when T is string or // std::string. For any other type T, this value is undefined and the // function will abort the process. template class BuiltInDefaultValue { public: // This function returns true iff type T has a built-in default value. static bool Exists() { return false; } static T Get() { Assert(false, __FILE__, __LINE__, "Default action undefined for the function return type."); return internal::Invalid(); // The above statement will never be reached, but is required in // order for this function to compile. } }; // This partial specialization says that we use the same built-in // default value for T and const T. template class BuiltInDefaultValue { public: static bool Exists() { return BuiltInDefaultValue::Exists(); } static T Get() { return BuiltInDefaultValue::Get(); } }; // This partial specialization defines the default values for pointer // types. template class BuiltInDefaultValue { public: static bool Exists() { return true; } static T* Get() { return NULL; } }; // The following specializations define the default values for // specific types we care about. #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ template <> \ class BuiltInDefaultValue { \ public: \ static bool Exists() { return true; } \ static type Get() { return value; } \ } GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT #if GTEST_HAS_GLOBAL_STRING GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, ""); #endif // GTEST_HAS_GLOBAL_STRING GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); // There's no need for a default action for signed wchar_t, as that // type is the same as wchar_t for gcc, and invalid for MSVC. // // There's also no need for a default action for unsigned wchar_t, as // that type is the same as unsigned int for gcc, and invalid for // MSVC. #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT #endif GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ } // namespace internal // When an unexpected function call is encountered, Google Mock will // let it return a default value if the user has specified one for its // return type, or if the return type has a built-in default value; // otherwise Google Mock won't know what value to return and will have // to abort the process. // // The DefaultValue class allows a user to specify the // default value for a type T that is both copyable and publicly // destructible (i.e. anything that can be used as a function return // type). The usage is: // // // Sets the default value for type T to be foo. // DefaultValue::Set(foo); template class DefaultValue { public: // Sets the default value for type T; requires T to be // copy-constructable and have a public destructor. static void Set(T x) { delete value_; value_ = new T(x); } // Unsets the default value for type T. static void Clear() { delete value_; value_ = NULL; } // Returns true iff the user has set the default value for type T. static bool IsSet() { return value_ != NULL; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue::Exists(); } // Returns the default value for type T if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T Get() { return value_ == NULL ? internal::BuiltInDefaultValue::Get() : *value_; } private: static const T* value_; }; // This partial specialization allows a user to set default values for // reference types. template class DefaultValue { public: // Sets the default value for type T&. static void Set(T& x) { // NOLINT address_ = &x; } // Unsets the default value for type T&. static void Clear() { address_ = NULL; } // Returns true iff the user has set the default value for type T&. static bool IsSet() { return address_ != NULL; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue::Exists(); } // Returns the default value for type T& if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T& Get() { return address_ == NULL ? internal::BuiltInDefaultValue::Get() : *address_; } private: static T* address_; }; // This specialization allows DefaultValue::Get() to // compile. template <> class DefaultValue { public: static bool Exists() { return true; } static void Get() {} }; // Points to the user-set default value for type T. template const T* DefaultValue::value_ = NULL; // Points to the user-set default value for type T&. template T* DefaultValue::address_ = NULL; // Implement this interface to define an action for function type F. template class ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; ActionInterface() {} virtual ~ActionInterface() {} // Performs the action. This method is not const, as in general an // action can have side effects and be stateful. For example, a // get-the-next-element-from-the-collection action will need to // remember the current element. virtual Result Perform(const ArgumentTuple& args) = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); }; // An Action is a copyable and IMMUTABLE (except by assignment) // object that represents an action to be taken when a mock function // of type F is called. The implementation of Action is just a // linked_ptr to const ActionInterface, so copying is fairly cheap. // Don't inherit from Action! // // You can view an object implementing ActionInterface as a // concrete action (including its current state), and an Action // object as a handle to it. template class Action { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; // Constructs a null Action. Needed for storing Action objects in // STL containers. Action() : impl_(NULL) {} // Constructs an Action from its implementation. A NULL impl is // used to represent the "do-default" action. explicit Action(ActionInterface* impl) : impl_(impl) {} // Copy constructor. Action(const Action& action) : impl_(action.impl_) {} // This constructor allows us to turn an Action object into an // Action, as long as F's arguments can be implicitly converted // to Func's and Func's return type can be implicitly converted to // F's. template explicit Action(const Action& action); // Returns true iff this is the DoDefault() action. bool IsDoDefault() const { return impl_.get() == NULL; } // Performs the action. Note that this method is const even though // the corresponding method in ActionInterface is not. The reason // is that a const Action means that it cannot be re-bound to // another concrete action, not that the concrete action it binds to // cannot change state. (Think of the difference between a const // pointer and a pointer to const.) Result Perform(const ArgumentTuple& args) const { internal::Assert( !IsDoDefault(), __FILE__, __LINE__, "You are using DoDefault() inside a composite action like " "DoAll() or WithArgs(). This is not supported for technical " "reasons. Please instead spell out the default action, or " "assign the default action to an Action variable and use " "the variable in various places."); return impl_->Perform(args); } private: template friend class internal::ActionAdaptor; internal::linked_ptr > impl_; }; // The PolymorphicAction class template makes it easy to implement a // polymorphic action (i.e. an action that can be used in mock // functions of than one type, e.g. Return()). // // To define a polymorphic action, a user first provides a COPYABLE // implementation class that has a Perform() method template: // // class FooAction { // public: // template // Result Perform(const ArgumentTuple& args) const { // // Processes the arguments and returns a result, using // // tr1::get(args) to get the N-th (0-based) argument in the tuple. // } // ... // }; // // Then the user creates the polymorphic action using // MakePolymorphicAction(object) where object has type FooAction. See // the definition of Return(void) and SetArgumentPointee(value) for // complete examples. template class PolymorphicAction { public: explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} template operator Action() const { return Action(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual Result Perform(const ArgumentTuple& args) { return impl_.template Perform(args); } private: Impl impl_; GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); }; Impl impl_; GTEST_DISALLOW_ASSIGN_(PolymorphicAction); }; // Creates an Action from its implementation and returns it. The // created Action object owns the implementation. template Action MakeAction(ActionInterface* impl) { return Action(impl); } // Creates a polymorphic action from its implementation. This is // easier to use than the PolymorphicAction constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicAction(foo); // vs // PolymorphicAction(foo); template inline PolymorphicAction MakePolymorphicAction(const Impl& impl) { return PolymorphicAction(impl); } namespace internal { // Allows an Action object to pose as an Action, as long as F2 // and F1 are compatible. template class ActionAdaptor : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit ActionAdaptor(const Action& from) : impl_(from.impl_) {} virtual Result Perform(const ArgumentTuple& args) { return impl_->Perform(args); } private: const internal::linked_ptr > impl_; GTEST_DISALLOW_ASSIGN_(ActionAdaptor); }; // Implements the polymorphic Return(x) action, which can be used in // any function that returns the type of x, regardless of the argument // types. // // Note: The value passed into Return must be converted into // Function::Result when this action is cast to Action rather than // when that action is performed. This is important in scenarios like // // MOCK_METHOD1(Method, T(U)); // ... // { // Foo foo; // X x(&foo); // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); // } // // In the example above the variable x holds reference to foo which leaves // scope and gets destroyed. If copying X just copies a reference to foo, // that copy will be left with a hanging reference. If conversion to T // makes a copy of foo, the above code is safe. To support that scenario, we // need to make sure that the type conversion happens inside the EXPECT_CALL // statement, and conversion of the result of Return to Action is a // good place for that. // template class ReturnAction { public: // Constructs a ReturnAction object from the value to be returned. // 'value' is passed by value instead of by const reference in order // to allow Return("string literal") to compile. explicit ReturnAction(R value) : value_(value) {} // This template type conversion operator allows Return(x) to be // used in ANY function that returns x's type. template operator Action() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename Function::Result Result; GTEST_COMPILE_ASSERT_( !internal::is_reference::value, use_ReturnRef_instead_of_Return_to_return_a_reference); return Action(new Impl(value_)); } private: // Implements the Return(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; // The implicit cast is necessary when Result has more than one // single-argument constructor (e.g. Result is std::vector) and R // has a type conversion operator template. In that case, value_(value) // won't compile as the compiler doesn't known which constructor of // Result to call. ImplicitCast_ forces the compiler to convert R to // Result without considering explicit constructors, thus resolving the // ambiguity. value_ is then initialized using its copy constructor. explicit Impl(R value) : value_(::testing::internal::ImplicitCast_(value)) {} virtual Result Perform(const ArgumentTuple&) { return value_; } private: GTEST_COMPILE_ASSERT_(!internal::is_reference::value, Result_cannot_be_a_reference_type); Result value_; GTEST_DISALLOW_ASSIGN_(Impl); }; R value_; GTEST_DISALLOW_ASSIGN_(ReturnAction); }; // Implements the ReturnNull() action. class ReturnNullAction { public: // Allows ReturnNull() to be used in any pointer-returning function. template static Result Perform(const ArgumentTuple&) { GTEST_COMPILE_ASSERT_(internal::is_pointer::value, ReturnNull_can_be_used_to_return_a_pointer_only); return NULL; } }; // Implements the Return() action. class ReturnVoidAction { public: // Allows Return() to be used in any void-returning function. template static void Perform(const ArgumentTuple&) { CompileAssertTypesEqual(); } }; // Implements the polymorphic ReturnRef(x) action, which can be used // in any function that returns a reference to the type of x, // regardless of the argument types. template class ReturnRefAction { public: // Constructs a ReturnRefAction object from the reference to be returned. explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT // This template type conversion operator allows ReturnRef(x) to be // used in ANY function that returns a reference to x's type. template operator Action() const { typedef typename Function::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRef(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_(internal::is_reference::value, use_Return_instead_of_ReturnRef_to_return_a_value); return Action(new Impl(ref_)); } private: // Implements the ReturnRef(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(T& ref) : ref_(ref) {} // NOLINT virtual Result Perform(const ArgumentTuple&) { return ref_; } private: T& ref_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& ref_; GTEST_DISALLOW_ASSIGN_(ReturnRefAction); }; // Implements the polymorphic ReturnRefOfCopy(x) action, which can be // used in any function that returns a reference to the type of x, // regardless of the argument types. template class ReturnRefOfCopyAction { public: // Constructs a ReturnRefOfCopyAction object from the reference to // be returned. explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT // This template type conversion operator allows ReturnRefOfCopy(x) to be // used in ANY function that returns a reference to x's type. template operator Action() const { typedef typename Function::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRefOfCopy(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_( internal::is_reference::value, use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); return Action(new Impl(value_)); } private: // Implements the ReturnRefOfCopy(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const T& value) : value_(value) {} // NOLINT virtual Result Perform(const ArgumentTuple&) { return value_; } private: T value_; GTEST_DISALLOW_ASSIGN_(Impl); }; const T value_; GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); }; // Implements the polymorphic DoDefault() action. class DoDefaultAction { public: // This template type conversion operator allows DoDefault() to be // used in any function. template operator Action() const { return Action(NULL); } }; // Implements the Assign action to set a given pointer referent to a // particular value. template class AssignAction { public: AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} template void Perform(const ArgumentTuple& /* args */) const { *ptr_ = value_; } private: T1* const ptr_; const T2 value_; GTEST_DISALLOW_ASSIGN_(AssignAction); }; #if !GTEST_OS_WINDOWS_MOBILE // Implements the SetErrnoAndReturn action to simulate return from // various system calls and libc functions. template class SetErrnoAndReturnAction { public: SetErrnoAndReturnAction(int errno_value, T result) : errno_(errno_value), result_(result) {} template Result Perform(const ArgumentTuple& /* args */) const { errno = errno_; return result_; } private: const int errno_; const T result_; GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); }; #endif // !GTEST_OS_WINDOWS_MOBILE // Implements the SetArgumentPointee(x) action for any function // whose N-th argument (0-based) is a pointer to x's type. The // template parameter kIsProto is true iff type A is ProtocolMessage, // proto2::Message, or a sub-class of those. template class SetArgumentPointeeAction { public: // Constructs an action that sets the variable pointed to by the // N-th function argument to 'value'. explicit SetArgumentPointeeAction(const A& value) : value_(value) {} template void Perform(const ArgumentTuple& args) const { CompileAssertTypesEqual(); *::std::tr1::get(args) = value_; } private: const A value_; GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); }; template class SetArgumentPointeeAction { public: // Constructs an action that sets the variable pointed to by the // N-th function argument to 'proto'. Both ProtocolMessage and // proto2::Message have the CopyFrom() method, so the same // implementation works for both. explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) { proto_->CopyFrom(proto); } template void Perform(const ArgumentTuple& args) const { CompileAssertTypesEqual(); ::std::tr1::get(args)->CopyFrom(*proto_); } private: const internal::linked_ptr proto_; GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); }; // Implements the InvokeWithoutArgs(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. InvokeWithoutArgs(f) can be used as an // Action as long as f's type is compatible with F (i.e. f can be // assigned to a tr1::function). template class InvokeWithoutArgsAction { public: // The c'tor makes a copy of function_impl (either a function // pointer or a functor). explicit InvokeWithoutArgsAction(FunctionImpl function_impl) : function_impl_(function_impl) {} // Allows InvokeWithoutArgs(f) to be used as any action whose type is // compatible with f. template Result Perform(const ArgumentTuple&) { return function_impl_(); } private: FunctionImpl function_impl_; GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction); }; // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. template class InvokeMethodWithoutArgsAction { public: InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr) : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} template Result Perform(const ArgumentTuple&) const { return (obj_ptr_->*method_ptr_)(); } private: Class* const obj_ptr_; const MethodPtr method_ptr_; GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction); }; // Implements the IgnoreResult(action) action. template class IgnoreResultAction { public: explicit IgnoreResultAction(const A& action) : action_(action) {} template operator Action() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename internal::Function::Result Result; // Asserts at compile time that F returns void. CompileAssertTypesEqual(); return Action(new Impl(action_)); } private: template class Impl : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit Impl(const A& action) : action_(action) {} virtual void Perform(const ArgumentTuple& args) { // Performs the action and ignores its result. action_.Perform(args); } private: // Type OriginalFunction is the same as F except that its return // type is IgnoredValue. typedef typename internal::Function::MakeResultIgnoredValue OriginalFunction; const Action action_; GTEST_DISALLOW_ASSIGN_(Impl); }; const A action_; GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); }; // A ReferenceWrapper object represents a reference to type T, // which can be either const or not. It can be explicitly converted // from, and implicitly converted to, a T&. Unlike a reference, // ReferenceWrapper can be copied and can survive template type // inference. This is used to support by-reference arguments in the // InvokeArgument(...) action. The idea was from "reference // wrappers" in tr1, which we don't have in our source tree yet. template class ReferenceWrapper { public: // Constructs a ReferenceWrapper object from a T&. explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT // Allows a ReferenceWrapper object to be implicitly converted to // a T&. operator T&() const { return *pointer_; } private: T* pointer_; }; // Allows the expression ByRef(x) to be printed as a reference to x. template void PrintTo(const ReferenceWrapper& ref, ::std::ostream* os) { T& value = ref; UniversalPrinter::Print(value, os); } // Does two actions sequentially. Used for implementing the DoAll(a1, // a2, ...) action. template class DoBothAction { public: DoBothAction(Action1 action1, Action2 action2) : action1_(action1), action2_(action2) {} // This template type conversion operator allows DoAll(a1, ..., a_n) // to be used in ANY function of compatible type. template operator Action() const { return Action(new Impl(action1_, action2_)); } private: // Implements the DoAll(...) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; typedef typename Function::MakeResultVoid VoidResult; Impl(const Action& action1, const Action& action2) : action1_(action1), action2_(action2) {} virtual Result Perform(const ArgumentTuple& args) { action1_.Perform(args); return action2_.Perform(args); } private: const Action action1_; const Action action2_; GTEST_DISALLOW_ASSIGN_(Impl); }; Action1 action1_; Action2 action2_; GTEST_DISALLOW_ASSIGN_(DoBothAction); }; } // namespace internal // An Unused object can be implicitly constructed from ANY value. // This is handy when defining actions that ignore some or all of the // mock function arguments. For example, given // // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); // MOCK_METHOD3(Bar, double(int index, double x, double y)); // // instead of // // double DistanceToOriginWithLabel(const string& label, double x, double y) { // return sqrt(x*x + y*y); // } // double DistanceToOriginWithIndex(int index, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXEPCT_CALL(mock, Foo("abc", _, _)) // .WillOnce(Invoke(DistanceToOriginWithLabel)); // EXEPCT_CALL(mock, Bar(5, _, _)) // .WillOnce(Invoke(DistanceToOriginWithIndex)); // // you could write // // // We can declare any uninteresting argument as Unused. // double DistanceToOrigin(Unused, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); typedef internal::IgnoredValue Unused; // This constructor allows us to turn an Action object into an // Action, as long as To's arguments can be implicitly converted // to From's and From's return type cann be implicitly converted to // To's. template template Action::Action(const Action& from) : impl_(new internal::ActionAdaptor(from)) {} // Creates an action that returns 'value'. 'value' is passed by value // instead of const reference - otherwise Return("string literal") // will trigger a compiler error about using array as initializer. template internal::ReturnAction Return(R value) { return internal::ReturnAction(value); } // Creates an action that returns NULL. inline PolymorphicAction ReturnNull() { return MakePolymorphicAction(internal::ReturnNullAction()); } // Creates an action that returns from a void function. inline PolymorphicAction Return() { return MakePolymorphicAction(internal::ReturnVoidAction()); } // Creates an action that returns the reference to a variable. template inline internal::ReturnRefAction ReturnRef(R& x) { // NOLINT return internal::ReturnRefAction(x); } // Creates an action that returns the reference to a copy of the // argument. The copy is created when the action is constructed and // lives as long as the action. template inline internal::ReturnRefOfCopyAction ReturnRefOfCopy(const R& x) { return internal::ReturnRefOfCopyAction(x); } // Creates an action that does the default action for the give mock function. inline internal::DoDefaultAction DoDefault() { return internal::DoDefaultAction(); } // Creates an action that sets the variable pointed by the N-th // (0-based) function argument to 'value'. template PolymorphicAction< internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage::value> > SetArgPointee(const T& x) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage::value>(x)); } #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN) // This overload allows SetArgPointee() to accept a string literal. // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish // this overload from the templated version and emit a compile error. template PolymorphicAction< internal::SetArgumentPointeeAction > SetArgPointee(const char* p) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, const char*, false>(p)); } template PolymorphicAction< internal::SetArgumentPointeeAction > SetArgPointee(const wchar_t* p) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, const wchar_t*, false>(p)); } #endif // The following version is DEPRECATED. template PolymorphicAction< internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage::value> > SetArgumentPointee(const T& x) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage::value>(x)); } // Creates an action that sets a pointer referent to a given value. template PolymorphicAction > Assign(T1* ptr, T2 val) { return MakePolymorphicAction(internal::AssignAction(ptr, val)); } #if !GTEST_OS_WINDOWS_MOBILE // Creates an action that sets errno and returns the appropriate error. template PolymorphicAction > SetErrnoAndReturn(int errval, T result) { return MakePolymorphicAction( internal::SetErrnoAndReturnAction(errval, result)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Various overloads for InvokeWithoutArgs(). // Creates an action that invokes 'function_impl' with no argument. template PolymorphicAction > InvokeWithoutArgs(FunctionImpl function_impl) { return MakePolymorphicAction( internal::InvokeWithoutArgsAction(function_impl)); } // Creates an action that invokes the given method on the given object // with no argument. template PolymorphicAction > InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) { return MakePolymorphicAction( internal::InvokeMethodWithoutArgsAction( obj_ptr, method_ptr)); } // Creates an action that performs an_action and throws away its // result. In other words, it changes the return type of an_action to // void. an_action MUST NOT return void, or the code won't compile. template inline internal::IgnoreResultAction IgnoreResult(const A& an_action) { return internal::IgnoreResultAction(an_action); } // Creates a reference wrapper for the given L-value. If necessary, // you can explicitly specify the type of the reference. For example, // suppose 'derived' is an object of type Derived, ByRef(derived) // would wrap a Derived&. If you want to wrap a const Base& instead, // where Base is a base class of Derived, just write: // // ByRef(derived) template inline internal::ReferenceWrapper ByRef(T& l_value) { // NOLINT return internal::ReferenceWrapper(l_value); } } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used cardinalities. More // cardinalities can be defined by the user implementing the // CardinalityInterface interface if necessary. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #include #include // NOLINT namespace testing { // To implement a cardinality Foo, define: // 1. a class FooCardinality that implements the // CardinalityInterface interface, and // 2. a factory function that creates a Cardinality object from a // const FooCardinality*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Cardinality objects can now be copied like plain values. // The implementation of a cardinality. class CardinalityInterface { public: virtual ~CardinalityInterface() {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. virtual int ConservativeLowerBound() const { return 0; } virtual int ConservativeUpperBound() const { return INT_MAX; } // Returns true iff call_count calls will satisfy this cardinality. virtual bool IsSatisfiedByCallCount(int call_count) const = 0; // Returns true iff call_count calls will saturate this cardinality. virtual bool IsSaturatedByCallCount(int call_count) const = 0; // Describes self to an ostream. virtual void DescribeTo(::std::ostream* os) const = 0; }; // A Cardinality is a copyable and IMMUTABLE (except by assignment) // object that specifies how many times a mock function is expected to // be called. The implementation of Cardinality is just a linked_ptr // to const CardinalityInterface, so copying is fairly cheap. // Don't inherit from Cardinality! class GTEST_API_ Cardinality { public: // Constructs a null cardinality. Needed for storing Cardinality // objects in STL containers. Cardinality() {} // Constructs a Cardinality from its implementation. explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } // Returns true iff call_count calls will satisfy this cardinality. bool IsSatisfiedByCallCount(int call_count) const { return impl_->IsSatisfiedByCallCount(call_count); } // Returns true iff call_count calls will saturate this cardinality. bool IsSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count); } // Returns true iff call_count calls will over-saturate this // cardinality, i.e. exceed the maximum number of allowed calls. bool IsOverSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count) && !impl_->IsSatisfiedByCallCount(call_count); } // Describes self to an ostream void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the given actual call count to an ostream. static void DescribeActualCallCountTo(int actual_call_count, ::std::ostream* os); private: internal::linked_ptr impl_; }; // Creates a cardinality that allows at least n calls. GTEST_API_ Cardinality AtLeast(int n); // Creates a cardinality that allows at most n calls. GTEST_API_ Cardinality AtMost(int n); // Creates a cardinality that allows any number of calls. GTEST_API_ Cardinality AnyNumber(); // Creates a cardinality that allows between min and max calls. GTEST_API_ Cardinality Between(int min, int max); // Creates a cardinality that allows exactly n calls. GTEST_API_ Cardinality Exactly(int n); // Creates a cardinality from its implementation. inline Cardinality MakeCardinality(const CardinalityInterface* c) { return Cardinality(c); } } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ // This file was GENERATED by a script. DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic actions. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ namespace testing { namespace internal { // InvokeHelper knows how to unpack an N-tuple and invoke an N-ary // function or method with the unpacked values, where F is a function // type that takes N arguments. template class InvokeHelper; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple<>&) { return function(); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<>&) { return (obj_ptr->*method_ptr)(); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } }; // CallableHelper has static methods for invoking "callables", // i.e. function pointers and functors. It uses overloading to // provide a uniform interface for invoking different kinds of // callables. In particular, you can use: // // CallableHelper::Call(callable, a1, a2, ..., an) // // to invoke an n-ary callable, where R is its return type. If an // argument, say a2, needs to be passed by reference, you should write // ByRef(a2) instead of a2 in the above expression. template class CallableHelper { public: // Calls a nullary callable. template static R Call(Function function) { return function(); } // Calls a unary callable. // We deliberately pass a1 by value instead of const reference here // in case it is a C-string literal. If we had declared the // parameter as 'const A1& a1' and write Call(function, "Hi"), the // compiler would've thought A1 is 'char[3]', which causes trouble // when you need to copy a value of type A1. By declaring the // parameter as 'A1 a1', the compiler will correctly infer that A1 // is 'const char*' when it sees Call(function, "Hi"). // // Since this function is defined inline, the compiler can get rid // of the copying of the arguments. Therefore the performance won't // be hurt. template static R Call(Function function, A1 a1) { return function(a1); } // Calls a binary callable. template static R Call(Function function, A1 a1, A2 a2) { return function(a1, a2); } // Calls a ternary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3) { return function(a1, a2, a3); } // Calls a 4-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4) { return function(a1, a2, a3, a4); } // Calls a 5-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) { return function(a1, a2, a3, a4, a5); } // Calls a 6-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) { return function(a1, a2, a3, a4, a5, a6); } // Calls a 7-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) { return function(a1, a2, a3, a4, a5, a6, a7); } // Calls a 8-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) { return function(a1, a2, a3, a4, a5, a6, a7, a8); } // Calls a 9-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) { return function(a1, a2, a3, a4, a5, a6, a7, a8, a9); } // Calls a 10-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9, A10 a10) { return function(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10); } }; // class CallableHelper // An INTERNAL macro for extracting the type of a tuple field. It's // subject to change without notice - DO NOT USE IN USER CODE! #define GMOCK_FIELD_(Tuple, N) \ typename ::std::tr1::tuple_element::type // SelectArgs::type is the // type of an n-ary function whose i-th (1-based) argument type is the // k{i}-th (0-based) field of ArgumentTuple, which must be a tuple // type, and whose return type is Result. For example, // SelectArgs, 0, 3>::type // is int(bool, long). // // SelectArgs::Select(args) // returns the selected fields (k1, k2, ..., k_n) of args as a tuple. // For example, // SelectArgs, 2, 0>::Select( // ::std::tr1::make_tuple(true, 'a', 2.5)) // returns ::std::tr1::tuple (2.5, true). // // The numbers in list k1, k2, ..., k_n must be >= 0, where n can be // in the range [0, 10]. Duplicates are allowed and they don't have // to be in an ascending or descending order. template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9), GMOCK_FIELD_(ArgumentTuple, k10)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& /* args */) { using ::std::tr1::get; return SelectedArgs(); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args)); } }; #undef GMOCK_FIELD_ // Implements the WithArgs action. template class WithArgsAction { public: explicit WithArgsAction(const InnerAction& action) : action_(action) {} template operator Action() const { return MakeAction(new Impl(action_)); } private: template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const InnerAction& action) : action_(action) {} virtual Result Perform(const ArgumentTuple& args) { return action_.Perform(SelectArgs::Select(args)); } private: typedef typename SelectArgs::type InnerFunctionType; Action action_; }; const InnerAction action_; GTEST_DISALLOW_ASSIGN_(WithArgsAction); }; // A macro from the ACTION* family (defined later in this file) // defines an action that can be used in a mock function. Typically, // these actions only care about a subset of the arguments of the mock // function. For example, if such an action only uses the second // argument, it can be used in any mock function that takes >= 2 // arguments where the type of the second argument is compatible. // // Therefore, the action implementation must be prepared to take more // arguments than it needs. The ExcessiveArg type is used to // represent those excessive arguments. In order to keep the compiler // error messages tractable, we define it in the testing namespace // instead of testing::internal. However, this is an INTERNAL TYPE // and subject to change without notice, so a user MUST NOT USE THIS // TYPE DIRECTLY. struct ExcessiveArg {}; // A helper class needed for implementing the ACTION* macros. template class ActionHelper { public: static Result Perform(Impl* impl, const ::std::tr1::tuple<>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<>(args, ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } }; } // namespace internal // Various overloads for Invoke(). // WithArgs(an_action) creates an action that passes // the selected arguments of the mock function to an_action and // performs it. It serves as an adaptor between actions with // different argument lists. C++ doesn't support default arguments for // function templates, so we have to overload it. template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } // Creates an action that does actions a1, a2, ..., sequentially in // each invocation. template inline internal::DoBothAction DoAll(Action1 a1, Action2 a2) { return internal::DoBothAction(a1, a2); } template inline internal::DoBothAction > DoAll(Action1 a1, Action2 a2, Action3 a3) { return DoAll(a1, DoAll(a2, a3)); } template inline internal::DoBothAction > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4) { return DoAll(a1, DoAll(a2, a3, a4)); } template inline internal::DoBothAction > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5) { return DoAll(a1, DoAll(a2, a3, a4, a5)); } template inline internal::DoBothAction > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6)); } template inline internal::DoBothAction > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7)); } template inline internal::DoBothAction > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8)); } template inline internal::DoBothAction > > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8, Action9 a9) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9)); } template inline internal::DoBothAction > > > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8, Action9 a9, Action10 a10) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9, a10)); } } // namespace testing // The ACTION* family of macros can be used in a namespace scope to // define custom actions easily. The syntax: // // ACTION(name) { statements; } // // will define an action with the given name that executes the // statements. The value returned by the statements will be used as // the return value of the action. Inside the statements, you can // refer to the K-th (0-based) argument of the mock function by // 'argK', and refer to its type by 'argK_type'. For example: // // ACTION(IncrementArg1) { // arg1_type temp = arg1; // return ++(*temp); // } // // allows you to write // // ...WillOnce(IncrementArg1()); // // You can also refer to the entire argument tuple and its type by // 'args' and 'args_type', and refer to the mock function type and its // return type by 'function_type' and 'return_type'. // // Note that you don't need to specify the types of the mock function // arguments. However rest assured that your code is still type-safe: // you'll get a compiler error if *arg1 doesn't support the ++ // operator, or if the type of ++(*arg1) isn't compatible with the // mock function's return type, for example. // // Sometimes you'll want to parameterize the action. For that you can use // another macro: // // ACTION_P(name, param_name) { statements; } // // For example: // // ACTION_P(Add, n) { return arg0 + n; } // // will allow you to write: // // ...WillOnce(Add(5)); // // Note that you don't need to provide the type of the parameter // either. If you need to reference the type of a parameter named // 'foo', you can write 'foo_type'. For example, in the body of // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type // of 'n'. // // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support // multi-parameter actions. // // For the purpose of typing, you can view // // ACTION_Pk(Foo, p1, ..., pk) { ... } // // as shorthand for // // template // FooActionPk Foo(p1_type p1, ..., pk_type pk) { ... } // // In particular, you can provide the template type arguments // explicitly when invoking Foo(), as in Foo(5, false); // although usually you can rely on the compiler to infer the types // for you automatically. You can assign the result of expression // Foo(p1, ..., pk) to a variable of type FooActionPk. This can be useful when composing actions. // // You can also overload actions with different numbers of parameters: // // ACTION_P(Plus, a) { ... } // ACTION_P2(Plus, a, b) { ... } // // While it's tempting to always use the ACTION* macros when defining // a new action, you should also consider implementing ActionInterface // or using MakePolymorphicAction() instead, especially if you need to // use the action a lot. While these approaches require more work, // they give you more control on the types of the mock function // arguments and the action parameters, which in general leads to // better compiler error messages that pay off in the long run. They // also allow overloading actions based on parameter types (as opposed // to just based on the number of parameters). // // CAVEAT: // // ACTION*() can only be used in a namespace scope. The reason is // that C++ doesn't yet allow function-local types to be used to // instantiate templates. The up-coming C++0x standard will fix this. // Once that's done, we'll consider supporting using ACTION*() inside // a function. // // MORE INFORMATION: // // To learn more about using these macros, please search for 'ACTION' // on http://code.google.com/p/googlemock/wiki/CookBook. // An internal macro needed for implementing ACTION*(). #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\ const args_type& args GTEST_ATTRIBUTE_UNUSED_, \ arg0_type arg0 GTEST_ATTRIBUTE_UNUSED_, \ arg1_type arg1 GTEST_ATTRIBUTE_UNUSED_, \ arg2_type arg2 GTEST_ATTRIBUTE_UNUSED_, \ arg3_type arg3 GTEST_ATTRIBUTE_UNUSED_, \ arg4_type arg4 GTEST_ATTRIBUTE_UNUSED_, \ arg5_type arg5 GTEST_ATTRIBUTE_UNUSED_, \ arg6_type arg6 GTEST_ATTRIBUTE_UNUSED_, \ arg7_type arg7 GTEST_ATTRIBUTE_UNUSED_, \ arg8_type arg8 GTEST_ATTRIBUTE_UNUSED_, \ arg9_type arg9 GTEST_ATTRIBUTE_UNUSED_ // Sometimes you want to give an action explicit template parameters // that cannot be inferred from its value parameters. ACTION() and // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that // and can be viewed as an extension to ACTION() and ACTION_P*(). // // The syntax: // // ACTION_TEMPLATE(ActionName, // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } // // defines an action template that takes m explicit template // parameters and n value parameters. name_i is the name of the i-th // template parameter, and kind_i specifies whether it's a typename, // an integral constant, or a template. p_i is the name of the i-th // value parameter. // // Example: // // // DuplicateArg(output) converts the k-th argument of the mock // // function to type T and copies it to *output. // ACTION_TEMPLATE(DuplicateArg, // HAS_2_TEMPLATE_PARAMS(int, k, typename, T), // AND_1_VALUE_PARAMS(output)) { // *output = T(std::tr1::get(args)); // } // ... // int n; // EXPECT_CALL(mock, Foo(_, _)) // .WillOnce(DuplicateArg<1, unsigned char>(&n)); // // To create an instance of an action template, write: // // ActionName(v1, ..., v_n) // // where the ts are the template arguments and the vs are the value // arguments. The value argument types are inferred by the compiler. // If you want to explicitly specify the value argument types, you can // provide additional template arguments: // // ActionName(v1, ..., v_n) // // where u_i is the desired type of v_i. // // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the // number of value parameters, but not on the number of template // parameters. Without the restriction, the meaning of the following // is unclear: // // OverloadedAction(x); // // Are we using a single-template-parameter action where 'bool' refers // to the type of x, or are we using a two-template-parameter action // where the compiler is asked to infer the type of x? // // Implementation notes: // // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for // implementing ACTION_TEMPLATE. The main trick we use is to create // new macro invocations when expanding a macro. For example, we have // // #define ACTION_TEMPLATE(name, template_params, value_params) // ... GMOCK_INTERNAL_DECL_##template_params ... // // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) // to expand to // // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... // // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the // preprocessor will continue to expand it to // // ... typename T ... // // This technique conforms to the C++ standard and is portable. It // allows us to implement action templates using O(N) code, where N is // the maximum number of template/value parameters supported. Without // using it, we'd have to devote O(N^2) amount of code to implement all // combinations of m and n. // Declares the template parameters. #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1) kind0 name0, kind1 name1 #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2) kind0 name0, kind1 name1, kind2 name2 #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ kind3 name3 #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ kind2 name2, kind3 name3, kind4 name4 #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ kind5 name5, kind6 name6 #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ kind4 name4, kind5 name5, kind6 name6, kind7 name7 #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ kind8 name8 #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ kind6 name6, kind7 name7, kind8 name8, kind9 name9 // Lists the template parameters. #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1) name0, name1 #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2) name0, name1, name2 #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3) name0, name1, name2, name3 #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ name4 #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ name2, name3, name4, name5 #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6) name0, name1, name2, name3, name4, name5, name6 #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ name6, name7, name8 #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ name3, name4, name5, name6, name7, name8, name9 // Declares the types of value parameters. #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ typename p0##_type, typename p1##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ typename p0##_type, typename p1##_type, typename p2##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ typename p2##_type, typename p3##_type, typename p4##_type, \ typename p5##_type, typename p6##_type, typename p7##_type, \ typename p8##_type, typename p9##_type // Initializes the value parameters. #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ () #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ (p0##_type gmock_p0) : p0(gmock_p0) #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ (p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), p1(gmock_p1) #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ (p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3) #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7) #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8), p9(gmock_p9) // Declares the fields for storing the value parameters. #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ p1##_type p1; #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ p1##_type p1; p2##_type p2; #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ p1##_type p1; p2##_type p2; p3##_type p3; #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; p6##_type p6; #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; p6##_type p6; p7##_type p7; #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ p9##_type p9; // Lists the value parameters. #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ p2, p3, p4 #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ p1, p2, p3, p4, p5 #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0, p1, p2, p3, p4, p5, p6 #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0, p1, p2, p3, p4, p5, p6, p7 #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 // Lists the value parameter types. #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ p1##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ p1##_type, p2##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ p0##_type, p1##_type, p2##_type, p3##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ p6##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type, p9##_type // Declares the value parameters. #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ p1##_type p1 #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ p1##_type p1, p2##_type p2 #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3 #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5 #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5, p6##_type p6 #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5, p6##_type p6, p7##_type p7 #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9 // The suffix of the class template implementing the action template. #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) P8 #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) P9 #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) P10 // The name of the class template implementing the action template. #define GMOCK_ACTION_CLASS_(name, value_params)\ GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) #define ACTION_TEMPLATE(name, template_params, value_params)\ template \ class GMOCK_ACTION_CLASS_(name, value_params) {\ public:\ GMOCK_ACTION_CLASS_(name, value_params)\ GMOCK_INTERNAL_INIT_##value_params {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ GMOCK_INTERNAL_DEFN_##value_params\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(\ new gmock_Impl(GMOCK_INTERNAL_LIST_##value_params));\ }\ GMOCK_INTERNAL_DEFN_##value_params\ private:\ GTEST_DISALLOW_ASSIGN_(GMOCK_ACTION_CLASS_(name, value_params));\ };\ template \ inline GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\ GMOCK_INTERNAL_DECL_##value_params) {\ return GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params>(\ GMOCK_INTERNAL_LIST_##value_params);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::\ gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION(name)\ class name##Action {\ public:\ name##Action() {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl() {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl());\ }\ private:\ GTEST_DISALLOW_ASSIGN_(name##Action);\ };\ inline name##Action name() {\ return name##Action();\ }\ template \ template \ typename ::testing::internal::Function::Result\ name##Action::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P(name, p0)\ template \ class name##ActionP {\ public:\ name##ActionP(p0##_type gmock_p0) : p0(gmock_p0) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ explicit gmock_Impl(p0##_type gmock_p0) : p0(gmock_p0) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0));\ }\ p0##_type p0;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP);\ };\ template \ inline name##ActionP name(p0##_type p0) {\ return name##ActionP(p0);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P2(name, p0, p1)\ template \ class name##ActionP2 {\ public:\ name##ActionP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ p1(gmock_p1) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ p1(gmock_p1) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1));\ }\ p0##_type p0;\ p1##_type p1;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP2);\ };\ template \ inline name##ActionP2 name(p0##_type p0, \ p1##_type p1) {\ return name##ActionP2(p0, p1);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP2::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P3(name, p0, p1, p2)\ template \ class name##ActionP3 {\ public:\ name##ActionP3(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP3);\ };\ template \ inline name##ActionP3 name(p0##_type p0, \ p1##_type p1, p2##_type p2) {\ return name##ActionP3(p0, p1, p2);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP3::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P4(name, p0, p1, p2, p3)\ template \ class name##ActionP4 {\ public:\ name##ActionP4(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP4);\ };\ template \ inline name##ActionP4 name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3) {\ return name##ActionP4(p0, p1, \ p2, p3);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP4::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P5(name, p0, p1, p2, p3, p4)\ template \ class name##ActionP5 {\ public:\ name##ActionP5(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, \ p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), \ p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP5);\ };\ template \ inline name##ActionP5 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4) {\ return name##ActionP5(p0, p1, p2, p3, p4);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP5::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P6(name, p0, p1, p2, p3, p4, p5)\ template \ class name##ActionP6 {\ public:\ name##ActionP6(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP6);\ };\ template \ inline name##ActionP6 name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3, p4##_type p4, p5##_type p5) {\ return name##ActionP6(p0, p1, p2, p3, p4, p5);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP6::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P7(name, p0, p1, p2, p3, p4, p5, p6)\ template \ class name##ActionP7 {\ public:\ name##ActionP7(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \ p6(gmock_p6) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5, \ p6));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP7);\ };\ template \ inline name##ActionP7 name(p0##_type p0, p1##_type p1, \ p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6) {\ return name##ActionP7(p0, p1, p2, p3, p4, p5, p6);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP7::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P8(name, p0, p1, p2, p3, p4, p5, p6, p7)\ template \ class name##ActionP8 {\ public:\ name##ActionP8(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, \ p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), \ p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), \ p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5, \ p6, p7));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP8);\ };\ template \ inline name##ActionP8 name(p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6, p7##_type p7) {\ return name##ActionP8(p0, p1, p2, p3, p4, p5, \ p6, p7);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP8::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8)\ template \ class name##ActionP9 {\ public:\ name##ActionP9(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5, \ p6, p7, p8));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP9);\ };\ template \ inline name##ActionP9 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \ p8##_type p8) {\ return name##ActionP9(p0, p1, p2, \ p3, p4, p5, p6, p7, p8);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP9::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)\ template \ class name##ActionP10 {\ public:\ name##ActionP10(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP10);\ };\ template \ inline name##ActionP10 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9) {\ return name##ActionP10(p0, \ p1, p2, p3, p4, p5, p6, p7, p8, p9);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP10::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const namespace testing { // The ACTION*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif // Various overloads for InvokeArgument(). // // The InvokeArgument(a1, a2, ..., a_k) action invokes the N-th // (0-based) argument, which must be a k-ary callable, of the mock // function, with arguments a1, a2, ..., a_k. // // Notes: // // 1. The arguments are passed by value by default. If you need to // pass an argument by reference, wrap it inside ByRef(). For // example, // // InvokeArgument<1>(5, string("Hello"), ByRef(foo)) // // passes 5 and string("Hello") by value, and passes foo by // reference. // // 2. If the callable takes an argument by reference but ByRef() is // not used, it will receive the reference to a copy of the value, // instead of the original value. For example, when the 0-th // argument of the mock function takes a const string&, the action // // InvokeArgument<0>(string("Hello")) // // makes a copy of the temporary string("Hello") object and passes a // reference of the copy, instead of the original temporary object, // to the callable. This makes it easy for a user to define an // InvokeArgument action from temporary values and have it performed // later. ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_0_VALUE_PARAMS()) { return internal::CallableHelper::Call( ::std::tr1::get(args)); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_1_VALUE_PARAMS(p0)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_2_VALUE_PARAMS(p0, p1)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_3_VALUE_PARAMS(p0, p1, p2)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_4_VALUE_PARAMS(p0, p1, p2, p3)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5, p6); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5, p6, p7); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5, p6, p7, p8); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5, p6, p7, p8, p9); } // Various overloads for ReturnNew(). // // The ReturnNew(a1, a2, ..., a_k) action returns a pointer to a new // instance of type T, constructed on the heap with constructor arguments // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_0_VALUE_PARAMS()) { return new T(); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_1_VALUE_PARAMS(p0)) { return new T(p0); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_2_VALUE_PARAMS(p0, p1)) { return new T(p0, p1); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_3_VALUE_PARAMS(p0, p1, p2)) { return new T(p0, p1, p2); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_4_VALUE_PARAMS(p0, p1, p2, p3)) { return new T(p0, p1, p2, p3); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) { return new T(p0, p1, p2, p3, p4); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) { return new T(p0, p1, p2, p3, p4, p5); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) { return new T(p0, p1, p2, p3, p4, p5, p6); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9); } #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ // This file was GENERATED by command: // pump.py gmock-generated-function-mockers.h.pump // DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements function mockers of various arities. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements the ON_CALL() and EXPECT_CALL() macros. // // A user can use the ON_CALL() macro to specify the default action of // a mock method. The syntax is: // // ON_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matcher) // .WillByDefault(action); // // where the .With() clause is optional. // // A user can use the EXPECT_CALL() macro to specify an expectation on // a mock method. The syntax is: // // EXPECT_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matchers) // .Times(cardinality) // .InSequence(sequences) // .After(expectations) // .WillOnce(action) // .WillRepeatedly(action) // .RetiresOnSaturation(); // // where all clauses are optional, and .InSequence()/.After()/ // .WillOnce() can appear any number of times. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #include #include #include #include #include #if GTEST_HAS_EXCEPTIONS # include // NOLINT #endif // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface interface if necessary. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include #include #include #include #include // NOLINT #include #include #include #include #if GTEST_LANG_CXX11 #include // NOLINT -- must be after gtest.h #endif namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface interface, and // 2. a factory function that creates a Matcher object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // MatchResultListener is an abstract class. Its << operator can be // used by a matcher to explain why a value matches or doesn't match. // // TODO(wan@google.com): add method // bool InterestedInWhy(bool result) const; // to indicate whether the listener is interested in why the match // result is 'result'. class MatchResultListener { public: // Creates a listener object with the given underlying ostream. The // listener does not own the ostream, and does not dereference it // in the constructor or destructor. explicit MatchResultListener(::std::ostream* os) : stream_(os) {} virtual ~MatchResultListener() = 0; // Makes this class abstract. // Streams x to the underlying ostream; does nothing if the ostream // is NULL. template MatchResultListener& operator<<(const T& x) { if (stream_ != NULL) *stream_ << x; return *this; } // Returns the underlying ostream. ::std::ostream* stream() { return stream_; } // Returns true iff the listener is interested in an explanation of // the match result. A matcher's MatchAndExplain() method can use // this information to avoid generating the explanation when no one // intends to hear it. bool IsInterested() const { return stream_ != NULL; } private: ::std::ostream* const stream_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); }; inline MatchResultListener::~MatchResultListener() { } // An instance of a subclass of this knows how to describe itself as a // matcher. class MatcherDescriberInterface { public: virtual ~MatcherDescriberInterface() {} // Describes this matcher to an ostream. The function should print // a verb phrase that describes the property a value matching this // matcher should have. The subject of the verb phrase is the value // being matched. For example, the DescribeTo() method of the Gt(7) // matcher prints "is greater than 7". virtual void DescribeTo(::std::ostream* os) const = 0; // Describes the negation of this matcher to an ostream. For // example, if the description of this matcher is "is greater than // 7", the negated description could be "is not greater than 7". // You are not required to override this when implementing // MatcherInterface, but it is highly advised so that your matcher // can produce good error messages. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not ("; DescribeTo(os); *os << ")"; } }; // The implementation of a matcher. template class MatcherInterface : public MatcherDescriberInterface { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener' if necessary (see the next paragraph), in // the form of a non-restrictive relative clause ("which ...", // "whose ...", etc) that describes x. For example, the // MatchAndExplain() method of the Pointee(...) matcher should // generate an explanation like "which points to ...". // // Implementations of MatchAndExplain() should add an explanation of // the match result *if and only if* they can provide additional // information that's not already present (or not obvious) in the // print-out of x and the matcher's description. Whether the match // succeeds is not a factor in deciding whether an explanation is // needed, as sometimes the caller needs to print a failure message // when the match succeeds (e.g. when the matcher is used inside // Not()). // // For example, a "has at least 10 elements" matcher should explain // what the actual element count is, regardless of the match result, // as it is useful information to the reader; on the other hand, an // "is empty" matcher probably only needs to explain what the actual // size is when the match fails, as it's redundant to say that the // size is 0 when the value is already known to be empty. // // You should override this method when defining a new matcher. // // It's the responsibility of the caller (Google Mock) to guarantee // that 'listener' is not NULL. This helps to simplify a matcher's // implementation when it doesn't care about the performance, as it // can talk to 'listener' without checking its validity first. // However, in order to implement dummy listeners efficiently, // listener->stream() may be NULL. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; // Inherits these methods from MatcherDescriberInterface: // virtual void DescribeTo(::std::ostream* os) const = 0; // virtual void DescribeNegationTo(::std::ostream* os) const; }; // A match result listener that stores the explanation in a string. class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {} // Returns the explanation accumulated so far. internal::string str() const { return ss_.str(); } // Clears the explanation accumulated so far. void Clear() { ss_.str(""); } private: ::std::stringstream ss_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); }; namespace internal { // A match result listener that ignores the explanation. class DummyMatchResultListener : public MatchResultListener { public: DummyMatchResultListener() : MatchResultListener(NULL) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); }; // A match result listener that forwards the explanation to a given // ostream. The difference between this and MatchResultListener is // that the former is concrete. class StreamMatchResultListener : public MatchResultListener { public: explicit StreamMatchResultListener(::std::ostream* os) : MatchResultListener(os) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); }; // An internal class for implementing Matcher, which will derive // from it. We put functionalities common to all Matcher // specializations here to avoid code duplication. template class MatcherBase { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener'. bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_->MatchAndExplain(x, listener); } // Returns true iff this matcher matches x. bool Matches(T x) const { DummyMatchResultListener dummy; return MatchAndExplain(x, &dummy); } // Describes this matcher to an ostream. void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the negation of this matcher to an ostream. void DescribeNegationTo(::std::ostream* os) const { impl_->DescribeNegationTo(os); } // Explains why x matches, or doesn't match, the matcher. void ExplainMatchResultTo(T x, ::std::ostream* os) const { StreamMatchResultListener listener(os); MatchAndExplain(x, &listener); } // Returns the describer for this matcher object; retains ownership // of the describer, which is only guaranteed to be alive when // this matcher object is alive. const MatcherDescriberInterface* GetDescriber() const { return impl_.get(); } protected: MatcherBase() {} // Constructs a matcher from its implementation. explicit MatcherBase(const MatcherInterface* impl) : impl_(impl) {} virtual ~MatcherBase() {} private: // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar // interfaces. The former dynamically allocates a chunk of memory // to hold the reference count, while the latter tracks all // references using a circular linked list without allocating // memory. It has been observed that linked_ptr performs better in // typical scenarios. However, shared_ptr can out-perform // linked_ptr when there are many more uses of the copy constructor // than the default constructor. // // If performance becomes a problem, we should see if using // shared_ptr helps. ::testing::internal::linked_ptr > impl_; }; } // namespace internal // A Matcher is a copyable and IMMUTABLE (except by assignment) // object that can check whether a value of type T matches. The // implementation of Matcher is just a linked_ptr to const // MatcherInterface, so copying is fairly cheap. Don't inherit // from Matcher! template class Matcher : public internal::MatcherBase { public: // Constructs a null matcher. Needed for storing Matcher objects in STL // containers. A default-constructed matcher is not yet initialized. You // cannot use it until a valid value has been assigned to it. Matcher() {} // Constructs a matcher from its implementation. explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Implicit constructor here allows people to write // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes Matcher(T value); // NOLINT }; // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a string // matcher is expected. template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; #if GTEST_HAS_STRING_PIECE_ // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece // matcher is expected. template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass StringPieces directly. Matcher(StringPiece s); // NOLINT }; template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass StringPieces directly. Matcher(StringPiece s); // NOLINT }; #endif // GTEST_HAS_STRING_PIECE_ // The PolymorphicMatcher class template makes it easy to implement a // polymorphic matcher (i.e. a matcher that can match values of more // than one type, e.g. Eq(n) and NotNull()). // // To define a polymorphic matcher, a user should provide an Impl // class that has a DescribeTo() method and a DescribeNegationTo() // method, and define a member function (or member function template) // // bool MatchAndExplain(const Value& value, // MatchResultListener* listener) const; // // See the definition of NotNull() for a complete example. template class PolymorphicMatcher { public: explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} // Returns a mutable reference to the underlying matcher // implementation object. Impl& mutable_impl() { return impl_; } // Returns an immutable reference to the underlying matcher // implementation object. const Impl& impl() const { return impl_; } template operator Matcher() const { return Matcher(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public MatcherInterface { public: explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual void DescribeTo(::std::ostream* os) const { impl_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { impl_.DescribeNegationTo(os); } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_.MatchAndExplain(x, listener); } private: const Impl impl_; GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); }; Impl impl_; GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); }; // Creates a matcher from its implementation. This is easier to use // than the Matcher constructor as it doesn't require you to // explicitly write the template argument, e.g. // // MakeMatcher(foo); // vs // Matcher(foo); template inline Matcher MakeMatcher(const MatcherInterface* impl) { return Matcher(impl); } // Creates a polymorphic matcher from its implementation. This is // easier to use than the PolymorphicMatcher constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicMatcher(foo); // vs // PolymorphicMatcher(foo); template inline PolymorphicMatcher MakePolymorphicMatcher(const Impl& impl) { return PolymorphicMatcher(impl); } // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)) or a value (for // example, "hello"). template class MatcherCastImpl { public: static Matcher Cast(M polymorphic_matcher_or_value) { // M can be a polymorhic matcher, in which case we want to use // its conversion operator to create Matcher. Or it can be a value // that should be passed to the Matcher's constructor. // // We can't call Matcher(polymorphic_matcher_or_value) when M is a // polymorphic matcher because it'll be ambiguous if T has an implicit // constructor from M (this usually happens when T has an implicit // constructor from any type). // // It won't work to unconditionally implict_cast // polymorphic_matcher_or_value to Matcher because it won't trigger // a user-defined conversion from M to T if one exists (assuming M is // a value). return CastImpl( polymorphic_matcher_or_value, BooleanConstant< internal::ImplicitlyConvertible >::value>()); } private: static Matcher CastImpl(M value, BooleanConstant) { // M can't be implicitly converted to Matcher, so M isn't a polymorphic // matcher. It must be a value then. Use direct initialization to create // a matcher. return Matcher(ImplicitCast_(value)); } static Matcher CastImpl(M polymorphic_matcher_or_value, BooleanConstant) { // M is implicitly convertible to Matcher, which means that either // M is a polymorhpic matcher or Matcher has an implicit constructor // from M. In both cases using the implicit conversion will produce a // matcher. // // Even if T has an implicit constructor from M, it won't be called because // creating Matcher would require a chain of two user-defined conversions // (first to create T from M and then to create Matcher from T). return polymorphic_matcher_or_value; } }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& source_matcher) { return Matcher(new Impl(source_matcher)); } private: class Impl : public MatcherInterface { public: explicit Impl(const Matcher& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return source_matcher_.MatchAndExplain(static_cast(x), listener); } virtual void DescribeTo(::std::ostream* os) const { source_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { source_matcher_.DescribeNegationTo(os); } private: const Matcher source_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& matcher) { return matcher; } }; } // namespace internal // In order to be safe and clear, casting between different matcher // types is done explicitly via MatcherCast(m), which takes a // matcher m and returns a Matcher. It compiles only when T can be // statically converted to the argument type of m. template inline Matcher MatcherCast(M matcher) { return internal::MatcherCastImpl::Cast(matcher); } // Implements SafeMatcherCast(). // // We use an intermediate class to do the actual safe casting as Nokia's // Symbian compiler cannot decide between // template ... (M) and // template ... (const Matcher&) // for function templates but can for member function templates. template class SafeMatcherCastImpl { public: // This overload handles polymorphic matchers and values only since // monomorphic matchers are handled by the next one. template static inline Matcher Cast(M polymorphic_matcher_or_value) { return internal::MatcherCastImpl::Cast(polymorphic_matcher_or_value); } // This overload handles monomorphic matchers. // // In general, if type T can be implicitly converted to type U, we can // safely convert a Matcher to a Matcher (i.e. Matcher is // contravariant): just keep a copy of the original Matcher, convert the // argument from type T to U, and then pass it to the underlying Matcher. // The only exception is when U is a reference and T is not, as the // underlying Matcher may be interested in the argument's address, which // is not preserved in the conversion from T to U. template static inline Matcher Cast(const Matcher& matcher) { // Enforce that T can be implicitly converted to U. GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible::value), T_must_be_implicitly_convertible_to_U); // Enforce that we are not converting a non-reference type T to a reference // type U. GTEST_COMPILE_ASSERT_( internal::is_reference::value || !internal::is_reference::value, cannot_convert_non_referentce_arg_to_reference); // In case both T and U are arithmetic types, enforce that the // conversion is not lossy. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; GTEST_COMPILE_ASSERT_( kTIsOther || kUIsOther || (internal::LosslessArithmeticConvertible::value), conversion_of_arithmetic_types_must_be_lossless); return MatcherCast(matcher); } }; template inline Matcher SafeMatcherCast(const M& polymorphic_matcher) { return SafeMatcherCastImpl::Cast(polymorphic_matcher); } // A() returns a matcher that matches any value of type T. template Matcher A(); // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // If the explanation is not empty, prints it to the ostream. inline void PrintIfNotEmpty(const internal::string& explanation, ::std::ostream* os) { if (explanation != "" && os != NULL) { *os << ", " << explanation; } } // Returns true if the given type name is easy to read by a human. // This is used to decide whether printing the type of a value might // be helpful. inline bool IsReadableTypeName(const string& type_name) { // We consider a type name readable if it's short or doesn't contain // a template or function type. return (type_name.length() <= 20 || type_name.find_first_of("<(") == string::npos); } // Matches the value against the given matcher, prints the value and explains // the match result to the listener. Returns the match result. // 'listener' must not be NULL. // Value cannot be passed by const reference, because some matchers take a // non-const argument. template bool MatchPrintAndExplain(Value& value, const Matcher& matcher, MatchResultListener* listener) { if (!listener->IsInterested()) { // If the listener is not interested, we do not need to construct the // inner explanation. return matcher.Matches(value); } StringMatchResultListener inner_listener; const bool match = matcher.MatchAndExplain(value, &inner_listener); UniversalPrint(value, listener->stream()); #if GTEST_HAS_RTTI const string& type_name = GetTypeName(); if (IsReadableTypeName(type_name)) *listener->stream() << " (of type " << type_name << ")"; #endif PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } // An internal helper class for doing compile-time loop on a tuple's // fields. template class TuplePrefix { public: // TuplePrefix::Matches(matcher_tuple, value_tuple) returns true // iff the first N fields of matcher_tuple matches the first N // fields of value_tuple, respectively. template static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { using ::std::tr1::get; return TuplePrefix::Matches(matcher_tuple, value_tuple) && get(matcher_tuple).Matches(get(value_tuple)); } // TuplePrefix::ExplainMatchFailuresTo(matchers, values, os) // describes failures in matching the first N fields of matchers // against the first N fields of values. If there is no failure, // nothing will be streamed to os. template static void ExplainMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { using ::std::tr1::tuple_element; using ::std::tr1::get; // First, describes failures in the first N - 1 fields. TuplePrefix::ExplainMatchFailuresTo(matchers, values, os); // Then describes the failure (if any) in the (N - 1)-th (0-based) // field. typename tuple_element::type matcher = get(matchers); typedef typename tuple_element::type Value; Value value = get(values); StringMatchResultListener listener; if (!matcher.MatchAndExplain(value, &listener)) { // TODO(wan): include in the message the name of the parameter // as used in MOCK_METHOD*() when possible. *os << " Expected arg #" << N - 1 << ": "; get(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the // universal printer from printing the address of value, which // isn't interesting to the user most of the time. The // matcher's MatchAndExplain() method handles the case when // the address is interesting. internal::UniversalPrint(value, os); PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } }; // The base case. template <> class TuplePrefix<0> { public: template static bool Matches(const MatcherTuple& /* matcher_tuple */, const ValueTuple& /* value_tuple */) { return true; } template static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, const ValueTuple& /* values */, ::std::ostream* /* os */) {} }; // TupleMatches(matcher_tuple, value_tuple) returns true iff all // matchers in matcher_tuple match the corresponding fields in // value_tuple. It is a compiler error if matcher_tuple and // value_tuple have different number of fields or incompatible field // types. template bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { using ::std::tr1::tuple_size; // Makes sure that matcher_tuple and value_tuple have the same // number of fields. GTEST_COMPILE_ASSERT_(tuple_size::value == tuple_size::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix::value>:: Matches(matcher_tuple, value_tuple); } // Describes failures in matching matchers against values. If there // is no failure, nothing will be streamed to os. template void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { using ::std::tr1::tuple_size; TuplePrefix::value>::ExplainMatchFailuresTo( matchers, values, os); } // TransformTupleValues and its helper. // // TransformTupleValuesHelper hides the internal machinery that // TransformTupleValues uses to implement a tuple traversal. template class TransformTupleValuesHelper { private: typedef typename ::std::tr1::tuple_size TupleSize; public: // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. // Returns the final value of 'out' in case the caller needs it. static OutIter Run(Func f, const Tuple& t, OutIter out) { return IterateOverTuple()(f, t, out); } private: template struct IterateOverTuple { OutIter operator() (Func f, const Tup& t, OutIter out) const { *out++ = f(::std::tr1::get(t)); return IterateOverTuple()(f, t, out); } }; template struct IterateOverTuple { OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { return out; } }; }; // Successively invokes 'f(element)' on each element of the tuple 't', // appending each result to the 'out' iterator. Returns the final value // of 'out'. template OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { return TransformTupleValuesHelper::Run(f, t, out); } // Implements A(). template class AnyMatcherImpl : public MatcherInterface { public: virtual bool MatchAndExplain( T /* x */, MatchResultListener* /* listener */) const { return true; } virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } virtual void DescribeNegationTo(::std::ostream* os) const { // This is mostly for completeness' safe, as it's not very useful // to write Not(A()). However we cannot completely rule out // such a possibility, and it doesn't hurt to be prepared. *os << "never matches"; } }; // Implements _, a matcher that matches any value of any // type. This is a polymorphic matcher, so we need a template type // conversion operator to make it appearing as a Matcher for any // type T. class AnythingMatcher { public: template operator Matcher() const { return A(); } }; // Implements a matcher that compares a given value with a // pre-supplied value using one of the ==, <=, <, etc, operators. The // two values being compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq(5) can be // used to match an int, a short, a double, etc). Therefore we use // a template type conversion operator in the implementation. // // We define this as a macro in order to eliminate duplicated source // code. // // The following template definition assumes that the Rhs parameter is // a "bare" type (i.e. neither 'const T' nor 'T&'). #define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \ name, op, relation, negated_relation) \ template class name##Matcher { \ public: \ explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \ template \ operator Matcher() const { \ return MakeMatcher(new Impl(rhs_)); \ } \ private: \ template \ class Impl : public MatcherInterface { \ public: \ explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \ virtual bool MatchAndExplain(\ Lhs lhs, MatchResultListener* /* listener */) const { \ return lhs op rhs_; \ } \ virtual void DescribeTo(::std::ostream* os) const { \ *os << relation " "; \ UniversalPrint(rhs_, os); \ } \ virtual void DescribeNegationTo(::std::ostream* os) const { \ *os << negated_relation " "; \ UniversalPrint(rhs_, os); \ } \ private: \ Rhs rhs_; \ GTEST_DISALLOW_ASSIGN_(Impl); \ }; \ Rhs rhs_; \ GTEST_DISALLOW_ASSIGN_(name##Matcher); \ } // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v) // respectively. GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >="); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <="); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to"); #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_ // Implements the polymorphic IsNull() matcher, which matches any raw or smart // pointer that is NULL. class IsNullMatcher { public: template bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return GetRawPointer(p) == NULL; } void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } }; // Implements the polymorphic NotNull() matcher, which matches any raw or smart // pointer that is not NULL. class NotNullMatcher { public: template bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return GetRawPointer(p) != NULL; } void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // Ref(variable) matches any argument that is a reference to // 'variable'. This matcher is polymorphic as it can match any // super type of the type of 'variable'. // // The RefMatcher template class implements Ref(variable). It can // only be instantiated with a reference type. This prevents a user // from mistakenly using Ref(x) to match a non-reference function // argument. For example, the following will righteously cause a // compiler error: // // int n; // Matcher m1 = Ref(n); // This won't compile. // Matcher m2 = Ref(n); // This will compile. template class RefMatcher; template class RefMatcher { // Google Mock is a generic framework and thus needs to support // mocking any function types, including those that take non-const // reference arguments. Therefore the template parameter T (and // Super below) can be instantiated to either a const type or a // non-const type. public: // RefMatcher() takes a T& instead of const T&, as we want the // compiler to catch using Ref(const_value) as a matcher for a // non-const reference. explicit RefMatcher(T& x) : object_(x) {} // NOLINT template operator Matcher() const { // By passing object_ (type T&) to Impl(), which expects a Super&, // we make sure that Super is a super type of T. In particular, // this catches using Ref(const_value) as a matcher for a // non-const reference, as you cannot implicitly convert a const // reference to a non-const reference. return MakeMatcher(new Impl(object_)); } private: template class Impl : public MatcherInterface { public: explicit Impl(Super& x) : object_(x) {} // NOLINT // MatchAndExplain() takes a Super& (as opposed to const Super&) // in order to match the interface MatcherInterface. virtual bool MatchAndExplain( Super& x, MatchResultListener* listener) const { *listener << "which is located @" << static_cast(&x); return &x == &object_; } virtual void DescribeTo(::std::ostream* os) const { *os << "references the variable "; UniversalPrinter::Print(object_, os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not reference the variable "; UniversalPrinter::Print(object_, os); } private: const Super& object_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& object_; GTEST_DISALLOW_ASSIGN_(RefMatcher); }; // Polymorphic helper functions for narrow and wide string matchers. inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); } inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); } // String comparison for narrow or wide strings that can have embedded NUL // characters. template bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal? if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; } // Skip the equal heads. const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul); // Are we at the end of either s1 or s2? if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; } // Are the tails equal? return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); } // String matchers. // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. template class StrEqualityMatcher { public: StrEqualityMatcher(const StringType& str, bool expect_eq, bool case_sensitive) : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { if (s == NULL) { return !expect_eq_; } return MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); const bool eq = case_sensitive_ ? s2 == string_ : CaseInsensitiveStringEquals(s2, string_); return expect_eq_ == eq; } void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); } void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); } private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << (expect_eq ? "is " : "isn't "); *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrint(string_, os); } const StringType string_; const bool expect_eq_; const bool case_sensitive_; GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); }; // Implements the polymorphic HasSubstr(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class HasSubstrMatcher { public: explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.find(substring_) != StringType::npos; } // Describes what this matcher matches. void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrint(substring_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrint(substring_, os); } private: const StringType substring_; GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); }; // Implements the polymorphic StartsWith(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class StartsWithMatcher { public: explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { } // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= prefix_.length() && s2.substr(0, prefix_.length()) == prefix_; } void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrint(prefix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrint(prefix_, os); } private: const StringType prefix_; GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); }; // Implements the polymorphic EndsWith(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class EndsWithMatcher { public: explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= suffix_.length() && s2.substr(s2.length() - suffix_.length()) == suffix_; } void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrint(suffix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrint(suffix_, os); } private: const StringType suffix_; GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); }; // Implements polymorphic matchers MatchesRegex(regex) and // ContainsRegex(regex), which can be used as a Matcher as long as // T can be converted to a string. class MatchesRegexMatcher { public: MatchesRegexMatcher(const RE* regex, bool full_match) : regex_(regex), full_match_(full_match) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(internal::string(s), listener); } // Matches anything that can convert to internal::string. // // This is a template, not just a plain function with const internal::string&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const internal::string& s2(s); return full_match_ ? RE::FullMatch(s2, *regex_) : RE::PartialMatch(s2, *regex_); } void DescribeTo(::std::ostream* os) const { *os << (full_match_ ? "matches" : "contains") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't " << (full_match_ ? "match" : "contain") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } private: const internal::linked_ptr regex_; const bool full_match_; GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); }; // Implements a matcher that compares the two fields of a 2-tuple // using one of the ==, <=, <, etc, operators. The two fields being // compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq() can be // used to match a tuple, a tuple, // etc). Therefore we use a template type conversion operator in the // implementation. // // We define this as a macro in order to eliminate duplicated source // code. #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \ class name##2Matcher { \ public: \ template \ operator Matcher< ::std::tr1::tuple >() const { \ return MakeMatcher(new Impl< ::std::tr1::tuple >); \ } \ template \ operator Matcher&>() const { \ return MakeMatcher(new Impl&>); \ } \ private: \ template \ class Impl : public MatcherInterface { \ public: \ virtual bool MatchAndExplain( \ Tuple args, \ MatchResultListener* /* listener */) const { \ return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \ } \ virtual void DescribeTo(::std::ostream* os) const { \ *os << "are " relation; \ } \ virtual void DescribeNegationTo(::std::ostream* os) const { \ *os << "aren't " relation; \ } \ }; \ } // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively. GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Ge, >=, "a pair where the first >= the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Gt, >, "a pair where the first > the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Le, <=, "a pair where the first <= the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Lt, <, "a pair where the first < the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair"); #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_ // Implements the Not(...) matcher for a particular argument type T. // We do not nest it inside the NotMatcher class template, as that // will prevent different instantiations of NotMatcher from sharing // the same NotMatcherImpl class. template class NotMatcherImpl : public MatcherInterface { public: explicit NotMatcherImpl(const Matcher& matcher) : matcher_(matcher) {} virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return !matcher_.MatchAndExplain(x, listener); } virtual void DescribeTo(::std::ostream* os) const { matcher_.DescribeNegationTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { matcher_.DescribeTo(os); } private: const Matcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); }; // Implements the Not(m) matcher, which matches a value that doesn't // match matcher m. template class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} // This template type conversion operator allows Not(m) to be used // to match any type m can match. template operator Matcher() const { return Matcher(new NotMatcherImpl(SafeMatcherCast(matcher_))); } private: InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcher); }; // Implements the AllOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the BothOfMatcher class template, as // that will prevent different instantiations of BothOfMatcher from // sharing the same BothOfMatcherImpl class. template class BothOfMatcherImpl : public MatcherInterface { public: BothOfMatcherImpl(const Matcher& matcher1, const Matcher& matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} virtual void DescribeTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeTo(os); *os << ") and ("; matcher2_.DescribeTo(os); *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeNegationTo(os); *os << ") or ("; matcher2_.DescribeNegationTo(os); *os << ")"; } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { // If either matcher1_ or matcher2_ doesn't match x, we only need // to explain why one of them fails. StringMatchResultListener listener1; if (!matcher1_.MatchAndExplain(x, &listener1)) { *listener << listener1.str(); return false; } StringMatchResultListener listener2; if (!matcher2_.MatchAndExplain(x, &listener2)) { *listener << listener2.str(); return false; } // Otherwise we need to explain why *both* of them match. const internal::string s1 = listener1.str(); const internal::string s2 = listener2.str(); if (s1 == "") { *listener << s2; } else { *listener << s1; if (s2 != "") { *listener << ", and " << s2; } } return true; } private: const Matcher matcher1_; const Matcher matcher2_; GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl); }; #if GTEST_LANG_CXX11 // MatcherList provides mechanisms for storing a variable number of matchers in // a list structure (ListType) and creating a combining matcher from such a // list. // The template is defined recursively using the following template paramters: // * kSize is the length of the MatcherList. // * Head is the type of the first matcher of the list. // * Tail denotes the types of the remaining matchers of the list. template struct MatcherList { typedef MatcherList MatcherListTail; typedef ::std::pair ListType; // BuildList stores variadic type values in a nested pair structure. // Example: // MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return // the corresponding result of type pair>. static ListType BuildList(const Head& matcher, const Tail&... tail) { return ListType(matcher, MatcherListTail::BuildList(tail...)); } // CreateMatcher creates a Matcher from a given list of matchers (built // by BuildList()). CombiningMatcher is used to combine the matchers of the // list. CombiningMatcher must implement MatcherInterface and have a // constructor taking two Matchers as input. template class CombiningMatcher> static Matcher CreateMatcher(const ListType& matchers) { return Matcher(new CombiningMatcher( SafeMatcherCast(matchers.first), MatcherListTail::template CreateMatcher( matchers.second))); } }; // The following defines the base case for the recursive definition of // MatcherList. template struct MatcherList<2, Matcher1, Matcher2> { typedef ::std::pair ListType; static ListType BuildList(const Matcher1& matcher1, const Matcher2& matcher2) { return ::std::pair(matcher1, matcher2); } template class CombiningMatcher> static Matcher CreateMatcher(const ListType& matchers) { return Matcher(new CombiningMatcher( SafeMatcherCast(matchers.first), SafeMatcherCast(matchers.second))); } }; // VariadicMatcher is used for the variadic implementation of // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). // CombiningMatcher is used to recursively combine the provided matchers // (of type Args...). template