/** * rijndael-api-fst.c * * @version 2.9 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen * @author Antoon Bosselaers * @author Paulo Barreto * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Acknowledgements: * * We are deeply indebted to the following people for their bug reports, * fixes, and improvement suggestions to this implementation. Though we * tried to list all contributions, we apologise in advance for any * missing reference. * * Andrew Bales * Markus Friedl * John Skodon */ #include #include #include #include "rijndael-alg-fst.h" #include "rijndael-api-fst.h" int makeKey(keyInstance *key, BYTE direction, int keyLen, const char *keyMaterial) { int i; char *keyMat; u8 cipherKey[MAXKB]; if (key == NULL) { return BAD_KEY_INSTANCE; } if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) { key->direction = direction; } else { return BAD_KEY_DIR; } if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) { key->keyLen = keyLen; } else { return BAD_KEY_MAT; } if (keyMaterial != NULL) { strncpy(key->keyMaterial, keyMaterial, keyLen/4); } /* initialize key schedule: */ keyMat = key->keyMaterial; for (i = 0; i < key->keyLen/8; i++) { int t, v; t = *keyMat++; if ((t >= '0') && (t <= '9')) v = (t - '0') << 4; else if ((t >= 'a') && (t <= 'f')) v = (t - 'a' + 10) << 4; else if ((t >= 'A') && (t <= 'F')) v = (t - 'A' + 10) << 4; else return BAD_KEY_MAT; t = *keyMat++; if ((t >= '0') && (t <= '9')) v ^= (t - '0'); else if ((t >= 'a') && (t <= 'f')) v ^= (t - 'a' + 10); else if ((t >= 'A') && (t <= 'F')) v ^= (t - 'A' + 10); else return BAD_KEY_MAT; cipherKey[i] = (u8)v; } if (direction == DIR_ENCRYPT) { key->Nr = rijndaelKeySetupEnc(key->rk, cipherKey, keyLen); } else { key->Nr = rijndaelKeySetupDec(key->rk, cipherKey, keyLen); } rijndaelKeySetupEnc(key->ek, cipherKey, keyLen); return TRUE; } int cipherInit(cipherInstance *cipher, BYTE mode, char *IV) { if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) { cipher->mode = mode; } else { return BAD_CIPHER_MODE; } if (IV != NULL) { int i; for (i = 0; i < MAX_IV_SIZE; i++) { int t, j; t = IV[2*i]; if ((t >= '0') && (t <= '9')) j = (t - '0') << 4; else if ((t >= 'a') && (t <= 'f')) j = (t - 'a' + 10) << 4; else if ((t >= 'A') && (t <= 'F')) j = (t - 'A' + 10) << 4; else return BAD_CIPHER_INSTANCE; t = IV[2*i+1]; if ((t >= '0') && (t <= '9')) j ^= (t - '0'); else if ((t >= 'a') && (t <= 'f')) j ^= (t - 'a' + 10); else if ((t >= 'A') && (t <= 'F')) j ^= (t - 'A' + 10); else return BAD_CIPHER_INSTANCE; cipher->IV[i] = (u8)j; } } else { memset(cipher->IV, 0, MAX_IV_SIZE); } return TRUE; } int blockEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputLen, BYTE *outBuffer) { int i, k, t, numBlocks; u8 block[16], *iv; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } break; case MODE_CBC: iv = cipher->IV; for (i = numBlocks; i > 0; i--) { ((u32*)block)[0] = ((u32*)input)[0] ^ ((u32*)iv)[0]; ((u32*)block)[1] = ((u32*)input)[1] ^ ((u32*)iv)[1]; ((u32*)block)[2] = ((u32*)input)[2] ^ ((u32*)iv)[2]; ((u32*)block)[3] = ((u32*)input)[3] ^ ((u32*)iv)[3]; rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); iv = outBuffer; input += 16; outBuffer += 16; } break; case MODE_CFB1: iv = cipher->IV; for (i = numBlocks; i > 0; i--) { memcpy(outBuffer, input, 16); for (k = 0; k < 128; k++) { rijndaelEncrypt(key->ek, key->Nr, iv, block); outBuffer[k >> 3] ^= (block[0] & 0x80U) >> (k & 7); for (t = 0; t < 15; t++) { iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7); } iv[15] = (iv[15] << 1) | ((outBuffer[k >> 3] >> (7 - (k & 7))) & 1); } outBuffer += 16; input += 16; } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } /** * Encrypt data partitioned in octets, using RFC 2040-like padding. * * @param input data to be encrypted (octet sequence) * @param inputOctets input length in octets (not bits) * @param outBuffer encrypted output data * * @return length in octets (not bits) of the encrypted output buffer. */ int padEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputOctets, BYTE *outBuffer) { int i, numBlocks, padLen; u8 block[16], *iv; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputOctets <= 0) { return 0; /* nothing to do */ } numBlocks = inputOctets/16; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } padLen = 16 - (inputOctets - 16*numBlocks); assert(padLen > 0 && padLen <= 16); memcpy(block, input, 16 - padLen); memset(block + 16 - padLen, padLen, padLen); rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); break; case MODE_CBC: iv = cipher->IV; for (i = numBlocks; i > 0; i--) { ((u32*)block)[0] = ((u32*)input)[0] ^ ((u32*)iv)[0]; ((u32*)block)[1] = ((u32*)input)[1] ^ ((u32*)iv)[1]; ((u32*)block)[2] = ((u32*)input)[2] ^ ((u32*)iv)[2]; ((u32*)block)[3] = ((u32*)input)[3] ^ ((u32*)iv)[3]; rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); iv = outBuffer; input += 16; outBuffer += 16; } padLen = 16 - (inputOctets - 16*numBlocks); assert(padLen > 0 && padLen <= 16); for (i = 0; i < 16 - padLen; i++) { block[i] = input[i] ^ iv[i]; } for (i = 16 - padLen; i < 16; i++) { block[i] = (BYTE)padLen ^ iv[i]; } rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); break; default: return BAD_CIPHER_STATE; } return 16*(numBlocks + 1); } int blockDecrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputLen, BYTE *outBuffer) { int i, k, t, numBlocks; u8 block[16], *iv; if (cipher == NULL || key == NULL || cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } break; case MODE_CBC: iv = cipher->IV; for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, block); ((u32*)block)[0] ^= ((u32*)iv)[0]; ((u32*)block)[1] ^= ((u32*)iv)[1]; ((u32*)block)[2] ^= ((u32*)iv)[2]; ((u32*)block)[3] ^= ((u32*)iv)[3]; memcpy(cipher->IV, input, 16); memcpy(outBuffer, block, 16); input += 16; outBuffer += 16; } break; case MODE_CFB1: iv = cipher->IV; for (i = numBlocks; i > 0; i--) { memcpy(outBuffer, input, 16); for (k = 0; k < 128; k++) { rijndaelEncrypt(key->ek, key->Nr, iv, block); for (t = 0; t < 15; t++) { iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7); } iv[15] = (iv[15] << 1) | ((input[k >> 3] >> (7 - (k & 7))) & 1); outBuffer[k >> 3] ^= (block[0] & 0x80U) >> (k & 7); } outBuffer += 16; input += 16; } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } int padDecrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputOctets, BYTE *outBuffer) { int i, numBlocks, padLen; u8 block[16]; if (cipher == NULL || key == NULL || key->direction == DIR_ENCRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputOctets <= 0) { return 0; /* nothing to do */ } if (inputOctets % 16 != 0) { return BAD_DATA; } numBlocks = inputOctets/16; switch (cipher->mode) { case MODE_ECB: /* all blocks but last */ for (i = numBlocks - 1; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } /* last block */ rijndaelDecrypt(key->rk, key->Nr, input, block); padLen = block[15]; if (padLen >= 16) { return BAD_DATA; } for (i = 16 - padLen; i < 16; i++) { if (block[i] != padLen) { return BAD_DATA; } } memcpy(outBuffer, block, 16 - padLen); break; case MODE_CBC: /* all blocks but last */ for (i = numBlocks - 1; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, block); ((u32*)block)[0] ^= ((u32*)cipher->IV)[0]; ((u32*)block)[1] ^= ((u32*)cipher->IV)[1]; ((u32*)block)[2] ^= ((u32*)cipher->IV)[2]; ((u32*)block)[3] ^= ((u32*)cipher->IV)[3]; memcpy(cipher->IV, input, 16); memcpy(outBuffer, block, 16); input += 16; outBuffer += 16; } /* last block */ rijndaelDecrypt(key->rk, key->Nr, input, block); ((u32*)block)[0] ^= ((u32*)cipher->IV)[0]; ((u32*)block)[1] ^= ((u32*)cipher->IV)[1]; ((u32*)block)[2] ^= ((u32*)cipher->IV)[2]; ((u32*)block)[3] ^= ((u32*)cipher->IV)[3]; padLen = block[15]; if (padLen <= 0 || padLen > 16) { return BAD_DATA; } for (i = 16 - padLen; i < 16; i++) { if (block[i] != padLen) { return BAD_DATA; } } memcpy(outBuffer, block, 16 - padLen); break; default: return BAD_CIPHER_STATE; } return 16*numBlocks - padLen; } #ifdef INTERMEDIATE_VALUE_KAT /** * cipherUpdateRounds: * * Encrypts/Decrypts exactly one full block a specified number of rounds. * Only used in the Intermediate Value Known Answer Test. * * Returns: * TRUE - on success * BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized) */ int cipherUpdateRounds(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputLen, BYTE *outBuffer, int rounds) { u8 block[16]; if (cipher == NULL || key == NULL) { return BAD_CIPHER_STATE; } memcpy(block, input, 16); switch (key->direction) { case DIR_ENCRYPT: rijndaelEncryptRound(key->rk, key->Nr, block, rounds); break; case DIR_DECRYPT: rijndaelDecryptRound(key->rk, key->Nr, block, rounds); break; default: return BAD_KEY_DIR; } memcpy(outBuffer, block, 16); return TRUE; } #endif /* INTERMEDIATE_VALUE_KAT */